Sec. 14.4: Tangent Planes and Linear Approximations

What We Will Go Over In Section 14.4

- Tangent Lines and Linear Approximations (Calc. I version)
- 2. Tangent Planes and Linear Approximations (Calc. IIII version)

Tangent Planes and Linear Approximations (Calc. I version)
 Calc 1 Version...

At what points on its graph is f(x) differentiable?

Graphically...

f(x) is differentiable at a point if when you zoom in to the graph of f at that point, the graph looks like a straight line.

Algebraically...

f(x) is differentiable at (a, f(a)) if $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists.

Tangent Planes and Linear Approximations (Calc. I version)
 Calc 1 Version...

Linear Approximation...

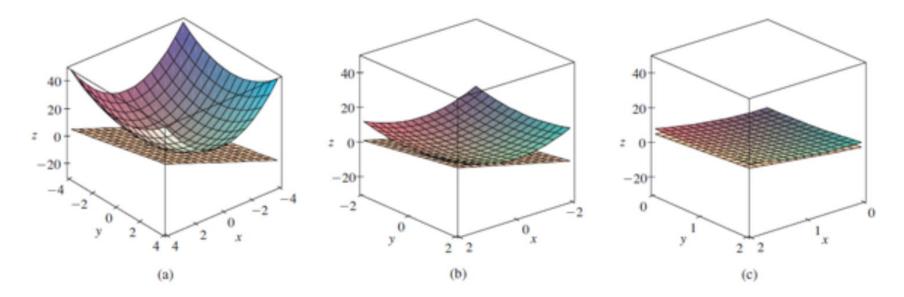
If f(x) is differentiable at (a, f(a)) and L(x) is the equation of the tangent line to f at that point, then f can be approximated by L near x = a. (I.e. $f(x) \approx L(x)$ if x is near a).

1. Tangent Planes and Linear Approximations (Calc. I version)

<u>Ex 0</u>: Find the linearization to $f(x) = \sqrt{x}$ at x = 9, then use the linearization to approximate $\sqrt{10}$.

1. Tangent Planes and Linear Approximations (Calc. III version) Calc 3 Version...

At what points on its graph is f(x,y) differentiable?



1. Tangent Planes and Linear Approximations (Calc. III version)

Calc 3 Version...

At what points on its graph is f(x,y) differentiable?

Graphically...

f(x,y) is differentiable at a point if when you zoom in to the graph of f at that point, the graph looks like a plane.

Algebraically...

Definition

If z = f(x, y), then f is **differentiable** at (a, b) if Δz can be expressed in the form

$$\Delta z=f_{x}\left(a,b
ight) \Delta x+f_{y}\left(a,b
ight) \Delta y+arepsilon_{1}\left(\Delta x+arepsilon_{2}\left(\Delta x+arepsilon_{2}
ight) \Delta y+arepsilon_{1}\left(\Delta x+arepsilon_{2}\left(\Delta x+arepsilon_{2}
ight) \Delta y+arepsilon_{2}\left(\Delta x+arepsilon_{2}\left(\Delta x+arepsilon_{2}
ight) \Delta y+arepsilon_{2}\left(\Delta x+arepsilon_{2}\left(\Delta x+arepsilon_{2}
ight) \Delta y+arepsilon_{2}\left(\Delta x+arepsilon_{2}\left(\Delta x+areps}\right) +arepsilon_{2}\left($$

where ε_1 and $\varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

1. Tangent Planes and Linear Approximations (Calc. III version)

Calc 3 Version...

At what points on its graph is f(x,y) differentiable?

Graphically...

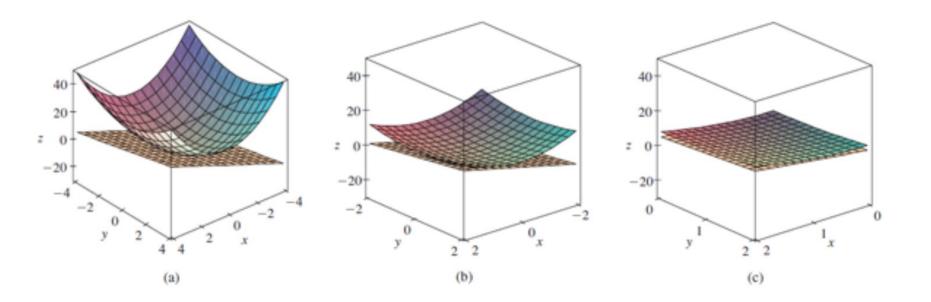
f(x,y) is differentiable at a point if when you zoom in to the graph of f at that point, the graph looks like a plane.

Algebraically...

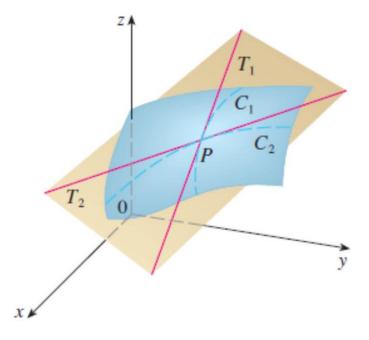
If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). Tangent Planes and Linear Approximations (Calc. III version)
 Calc 3 Version...

Linear Approximation...

If f(x,y) is differentiable at (a, b, f(a, b)) and L(x, y) is the equation of the tangent plane to f at that point, then f can be approximated by L near (a, b). (I.e. $f(x, y) \approx L(x, y)$ when (x, y) is near (a, b)).



1. Tangent Planes and Linear Approximations (Calc. III version) Derive formula for equation of tangent plane to a 2-variable function



1. Tangent Planes and Linear Approximations (Calc. III version)

<u>Ex 1</u>:

Example 1

Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

1. Tangent Planes and Linear Approximations (Calc. III version)

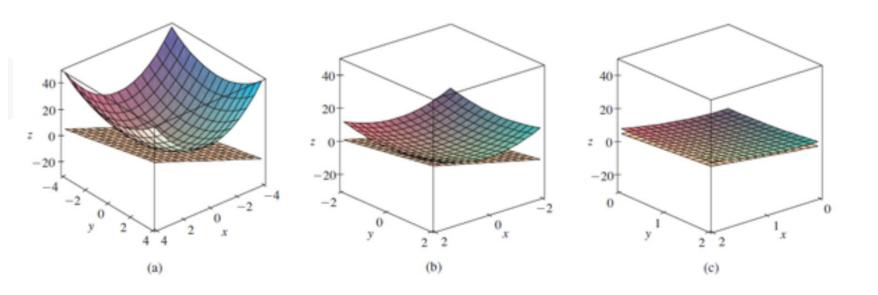
<u>Ex 1</u>:

Example 1

Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Figure 2

The elliptic paraboloid $z = 2x^2 + y^2$ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).



1. Tangent Planes and Linear Approximations (Calc. III version)

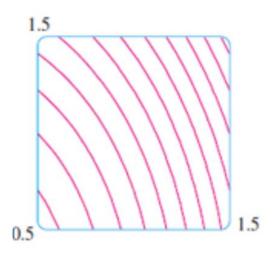
<u>Ex 1</u>:

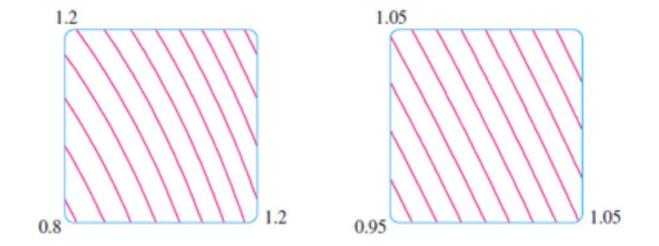
Example 1

Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Figure 3

Zooming in toward (1,1) on a contour map of $f(x,y) = 2x^2 + y^2$





1. Tangent Planes and Linear Approximations (Calc. III version)

<u>Ex 2</u>:

Example 2

Show that $f(x, y) = xe^{xy}$ is differentiable at (1, 0) and find its linearization there.

Then use it to approximate f(1.1, -0.1).